Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 37(2): 262-270, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34586410

RESUMO

BACKGROUND: Although Lowe syndrome and Dent disease-2 are caused by Oculocerebrorenal syndrome of Lowe (OCRL) mutations, their clinical severities differ substantially and their molecular mechanisms remain unclear. Truncating mutations in OCRL exons 1-7 lead to Dent disease-2, whereas those in exons 8-24 lead to Lowe syndrome. Herein we identified the mechanism underlying the action of novel OCRL protein isoforms. METHODS: Messenger RNA samples extracted from cultured urine-derived cells from a healthy control and a Dent disease-2 patient were examined to detect the 5' end of the OCRL isoform. For protein expression and functional analysis, vectors containing the full-length OCRL transcripts, the isoform transcripts and transcripts with truncating mutations detected in Lowe syndrome and Dent disease-2 patients were transfected into HeLa cells. RESULTS: We successfully cloned the novel isoform transcripts from OCRL exons 6-24, including the translation-initiation codons present in exon 8. In vitro protein-expression analysis detected proteins of two different sizes (105 and 80 kDa) translated from full-length OCRL, whereas only one protein (80 kDa) was found from the isoform and Dent disease-2 variants. No protein expression was observed for the Lowe syndrome variants. The isoform enzyme activity was equivalent to that of full-length OCRL; the Dent disease-2 variants retained >50% enzyme activity, whereas the Lowe syndrome variants retained <20% activity. CONCLUSIONS: We elucidated the molecular mechanism underlying the two different phenotypes in OCRL-related diseases; the functional OCRL isoform translated starting at exon 8 was associated with this mechanism.


Assuntos
Doença de Dent , Síndrome Oculocerebrorrenal , Monoéster Fosfórico Hidrolases , Doença de Dent/diagnóstico , Doença de Dent/genética , Células HeLa , Humanos , Mutação/genética , Síndrome Oculocerebrorrenal/diagnóstico , Síndrome Oculocerebrorrenal/genética , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Isoformas de Proteínas/genética
2.
iScience ; 24(11): 103351, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805799

RESUMO

The importance of the G-protein ßγ subunits in the regulation of cargo transport from the trans-Golgi network (TGN) to the plasma membrane (PM) is well accepted; however, the molecular mechanism underlying the G-protein activation at the TGN remains unclear. We show here that sphingosine 1-phosphate (S1P) receptors at the PM were trafficked to the TGN in response to a surface transport cargo, temperature-sensitive vesicular stomatitis virus glycoprotein tagged with green fluorescent protein accumulation in the Golgi. The receptor internalization occurred in an S1P-independent manner but required phosphorylation by G-protein receptor kinase 2 and ß-arrestin association before internalization. Continuously activated S1P receptors in a manner dependent on S1P at the TGN kept transmitting G-protein signals including the ßγ subunits supply necessary for transport carrier formation at the TGN destined for the PM.

3.
Kobe J Med Sci ; 66(3): E94-E101, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33431782

RESUMO

Macropinocytosis is a highly conserved cellular process of endocytosis by which extracellular fluid and nutrients are taken up into cells through large, heterogeneous vesicles known as macropinosomes. Growth factors such as epidermal growth factor (EGF) can induce macropinocytosis in many types of cells, although precise mechanism underlying EGF-induced macropinocytosis remains unclear. In the present studies we have shown the involvement of S1P signaling in EGF-induced macropinocytosis in COS7 cells. First, EGF-induced macropinocytosis was strongly impaired in sphingosine kinase isozymes, SphK1 or SphK2-depleted cells, which was completely rescued by the expression of the corresponding wild-type isozyme but not the catalytically inactive one, suggesting the involvement of sphingosine 1-phosphate (S1P) in this phenomenon. Next, we observed that EGF-induced macropinocytosis was strongly inhibited in S1P type 1 receptor (S1P1R)-knockdown cells, implying involvement of S1P1R in this event. Furthermore, we could successfully demonstrate EGF-induced trans-activation of S1P1R using one-molecular fluorescence resonance energy transfer (FRET) technique. Moreover, for EGF-induced Rac1 activation, a step essential to F-actin formation and subsequent macropinocytosis, S1P signaling is required for its full activation, as judged by FRET analysis. These findings indicate that growth factors such as EGF utilize receptor-mediated S1P signaling for the regulation of macropinocytosis to fulfil vital cell activity.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Lisofosfolipídeos/metabolismo , Pinocitose/fisiologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Células COS , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Esfingosina/metabolismo
4.
Semin Cancer Biol ; 59: 50-65, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30922959

RESUMO

Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Animais , Biomarcadores , Metabolismo Energético , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/genética , Transdução de Sinais
5.
J Biol Chem ; 293(21): 8208-8216, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632069

RESUMO

α-Synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, are thought to be involved in the pathogenesis of Lewy body diseases, such as Parkinson's disease (PD). Although growing evidence suggests that cell-to-cell transmission of α-Syn is associated with the progression of PD and that extracellular α-Syn promotes formation of inclusion bodies, its precise mechanism of action in the extracellular space remains unclear. Here, as indicated by both conventional fractionation techniques and FRET-based protein-protein interaction analysis, we demonstrate that extracellular α-Syn causes expulsion of sphingosine 1-phosphate receptor subtype 1 (S1P1R) from the lipid raft fractions. S1P1R regulates vesicular trafficking, and its expulsion involved α-Syn binding to membrane-surface gangliosides. Consequently, the S1P1R became refractory to S1P stimulation required for activating inhibitory G-protein (Gi) in the plasma membranes. Moreover, the extracellular α-Syn also induced uncoupling of the S1P1R on internal vesicles, resulting in the reduced amount of CD63 molecule (CD63) in the lumen of multivesicular endosomes, together with a decrease in CD63 in the released exosomes from α-Syn-treated cells. Furthermore, cholesterol-depleting agent-induced S1P1R expulsion from the rafts also resulted in S1P1R uncoupling. Taken together, these results suggest that extracellular α-Syn-induced expulsion of S1P1R from lipid rafts promotes the uncoupling of S1P1R from Gi, thereby blocking subsequent Gi signals, such as inhibition of cargo sorting into exosomal vesicles in multivesicular endosomes. These findings help shed additional light on PD pathogenesis.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Microdomínios da Membrana/metabolismo , Corpos Multivesiculares/metabolismo , Neuroblastoma/patologia , Receptores de Lisoesfingolipídeo/metabolismo , alfa-Sinucleína/metabolismo , Movimento Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Transporte Proteico , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Células Tumorais Cultivadas , alfa-Sinucleína/genética
6.
J Biol Chem ; 293(1): 245-253, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29133526

RESUMO

Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gßγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gßγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.


Assuntos
Actinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Endossomos/metabolismo , Exossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
7.
Sci Rep ; 7(1): 16552, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185452

RESUMO

Sphingosine 1-phosphate (S1P) is a pleiotropic lipid mediator involved in the regulation of immune cell trafficking and vascular permeability acting mainly through G-protein-coupled S1P receptors (S1PRs). However, mechanism underlying how S1PRs are coupled with G-proteins remains unknown. Here we have uncovered that palmitoylation of a prototypical subtype S1P1R is prerequisite for subsequent inhibitory G-protein (Gi) coupling. We have identified DHHC5 as an enzyme for palmitoylation of S1P1R. Under basal conditions, S1P1R was functionally associated with DHHC5 in the plasma membranes (PM) and was fully palmitoylated, enabling Gi coupling. Upon stimulation, the receptor underwent internalisation leaving DHHC5 in PM, resulting in depalmitoylation of S1P1R. We also revealed that while physiological agonist S1P-induced endocytosed S1P1R readily recycled back to PM, pharmacological FTY720-P-induced endocytosed S1P1R-positive vesicles became associated with DHHC5 in the later phase, persistently transmitting Gi signals there. This indicates that FTY720-P switches off the S1P signal in PM, while switching on its signal continuously inside the cells. We propose that DHHC5-mediated palmitoylation of S1P1R determines Gi coupling and its signalling in a spatio/temporal manner.


Assuntos
Aciltransferases/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Lipoilação , Lisofosfolipídeos/metabolismo , Organofosfatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia
8.
Cancer Sci ; 108(5): 941-951, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247964

RESUMO

Phosphoinositides play pivotal roles in the regulation of cancer cell phenotypes. Among them, phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2 ) localizes to the invadopodia, and positively regulates tumor cell invasion. In this study, we examined the effect of PI(3,4)P2 on focal adhesion dynamics in MDA-MB-231 basal breast cancer cells. Knockdown of SHIP2, a phosphatidylinositol 3,4,5-trisphosphatase (PIP3 ) 5-phosphatase that generates PI(3,4)P2 , in MDA-MB-231 breast cancer cells, induced the development of focal adhesions and cell spreading, leading to the suppression of invasion. In contrast, knockdown of PTEN, a 3-phosphatase that de-phosphorylates PIP3 and PI(3,4)P2 , induced cell shrinkage and increased cell invasion. Interestingly, additional knockdown of SHIP2 rescued these phenotypes. Overexpression of the TAPP1 PH domain, which binds to PI(3,4)P2 , and knockdown of Lpd, a downstream effector of PI(3,4)P2 , resulted in similar phenotypes to those induced by SHIP2 knockdown. Taken together, our results suggest that inhibition of PI(3,4)P2 generation and/or downstream signaling could be useful for inhibiting breast cancer metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/fisiologia , Adesões Focais/fisiologia , Fosfatidilinositóis/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Invasividade Neoplásica/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
9.
Cancer Sci ; 107(7): 981-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27178239

RESUMO

CD44, a transmembrane receptor, is expressed in the standard or variant form and plays a critical role in tumor progression and metastasis. This protein regulates cell adhesion and migration in breast cancer cells. We previously reported that phosphatidylinositol-4-phosphate (PI(4)P) at the Golgi regulates cell migration and invasion in breast cancer cell lines. In this study, we showed that an increase in PI(4)P levels at the Golgi by knockdown of PI(4)P phosphatase SAC1 increased the expression of standard CD44, variant CD44, and ezrin/radixin phosphorylation and enhanced the formation of focal adhesions mediated by CD44 and ezrin/radixin in MCF7 and SK-BR-3 cells. In contrast, knockdown of PI 4-kinase IIIß in highly invasive MDA-MB-231 cells decreased these factors. These results suggest that SAC1 expression and PI(4)P at the Golgi are important in tumor progression and metastasis and are potential prognostic markers of breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesões Focais/metabolismo , Complexo de Golgi/metabolismo , Receptores de Hialuronatos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , 1-Fosfatidilinositol 4-Quinase/deficiência , 1-Fosfatidilinositol 4-Quinase/genética , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Vinculina/metabolismo
10.
Genes Cells ; 21(5): 457-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26940976

RESUMO

Skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP), a PIP3 phosphatase, has been implicated in the regulation of insulin signaling in skeletal muscle. SKIP interacts with Pak1 and glucose-regulated protein 78 (GRP78), both of which are necessary for the regulation of insulin signaling. In this study, we showed that GRP78 directly binds to the SKIP C-terminal homology (SKICH) domain of SKIP and that this binding is necessary for the localization of SKIP at the ER. In addition, in vitro binding analysis showed that GRP78 and Pak1 competitively bind to SKIP. Taken together, these findings suggest a model by which GRP78 regulates intracellular localization of SKIP and how SKIP binds to Pak1 on insulin stimulation.


Assuntos
Proteínas de Choque Térmico/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Membrana Celular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Camundongos , Monoéster Fosfórico Hidrolases/genética , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quinases Ativadas por p21/metabolismo
11.
FEBS Lett ; 590(6): 750-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26921608

RESUMO

FSP27 has an important role in large lipid droplet (LD) formation because it exchanges lipids at the contact site between LDs. In the present study, we clarify that the amino-terminal domain of FSP27 (amino acids 1-130) is dispensable for LD enlargement, although it accelerates LD growth. LD expansion depends on the carboxy-terminal domain of FSP27 (amino acids 131-239). Especially, the negative charge of the acidic residues (D215, E218, E219 and E220) in the polar carboxy-terminal region (amino acids 202-239) is essential for the enlargement of LD. We propose that the carboxy-terminal domain of FSP27 has a crucial role in LD expansion, whereas the amino-terminal domain only has a supportive role.


Assuntos
Metabolismo dos Lipídeos , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Camundongos , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
12.
Mol Cell Biol ; 36(1): 108-18, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483413

RESUMO

Insulin resistance is critical in the pathogenesis of type 2 diabetes. Endoplasmic reticulum (ER) stress in liver and adipose tissues plays an important role in the development of insulin resistance. Although skeletal muscle is a primary site for insulin-dependent glucose disposal, it is unclear if ER stress in those tissues contributes to insulin resistance. In this study, we show that skeletal muscle kidney-enriched inositol polyphosphate phosphatase (SKIP), a PIP3 (phosphatidylinositol-3,4,5-trisphosphate) phosphatase, links ER stress to insulin resistance in skeletal muscle. SKIP expression was increased due to ER stress and was higher in the skeletal muscle isolated from high-fat-diet-fed mice and db/db mice than in that from wild-type mice. Mechanistically, ER stress promotes activating transcription factor 6 (ATF6) and X-box binding protein 1 (XBP1)-dependent expression of SKIP. These findings underscore the specific and prominent role of SKIP in the development of insulin resistance in skeletal muscle.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Músculo Esquelético/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Tecido Adiposo , Animais , Diabetes Mellitus Tipo 2/enzimologia , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética
13.
PLoS One ; 10(10): e0141569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509711

RESUMO

Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3- cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.


Assuntos
Ácido Aspártico , Domínio Catalítico , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Domínios e Motivos de Interação entre Proteínas , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cerebelo/metabolismo , Sequência Conservada , Ativação Enzimática , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Lectinas Tipo C/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Transporte Proteico , Ratos , Deleção de Sequência
14.
Biochim Biophys Acta ; 1853(12): 3192-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26376412

RESUMO

Insulin resistance is characterized as a pathogenic factor in type 2 diabetes. Despite skeletal muscle being primarily responsible for systemic glucose disposal, the mechanisms underlying the induction of insulin resistance in skeletal muscle have not been fully elucidated. A number of studies have shown that it is characterized by the inhibition of the phosphatidylinositol (PI) 3-kinase signaling pathway. Here, we show that skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP), a phosphatidylinositol-3,4,5-trisphosphate (PIP3) phosphatase, and glucose-regulated protein 78 (GRP78) are implicated in the inhibition of insulin-dependent PI 3-kinase signaling in skeletal muscle. Mechanistically, under resting conditions, SKIP forms a complex with GRP78 at the endoplasmic reticulum (ER). Insulin stimulation facilitates the dissociation of SKIP from GRP78 and its binding to the activated form of Pak1. GRP78 is necessary for membrane localization and Pak1-binding of SKIP, which facilitates inactivation of the insulin signaling pathway. These findings underscore the specific and prominent role of SKIP and GRP78 in the regulation of insulin-dependent PI 3-kinase signaling in skeletal muscle.


Assuntos
Proteínas de Choque Térmico/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Camundongos , Músculo Esquelético/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
15.
Biochem Biophys Res Commun ; 456(1): 41-6, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446075

RESUMO

Abnormalities in insulin-induced glucose incorporation in skeletal muscle were observed in Type 2 diabetes. Our previous studies revealed that the binding between skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) and p21-activated protein kinase (Pak1) at the plasma membrane is induced insulin-dependently and that this binding mediated a rapid and efficient termination of insulin signaling and a subsequent glucose uptake into skeletal muscle cells. Here, we identified 11-amino-acids peptide within kinase domain of Pak1, necessary and sufficient for SKIP binding. Expression of this region in C2C12 cells resulted in an increase in insulin signaling. Supplementation of a synthetic peptide of this sequence increased insulin signaling and insulin-induced glucose uptake into skeletal muscle cell lines. These findings suggest the physiological role of Pak1-SKIP binding in the regulation of insulin signaling in skeletal muscle.


Assuntos
Insulina/metabolismo , Mioblastos/citologia , Monoéster Fosfórico Hidrolases/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Camundongos , Microscopia de Fluorescência , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Ressonância de Plasmônio de Superfície
16.
Cancer Res ; 74(11): 3054-66, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24706697

RESUMO

Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIß, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Complexo de Golgi/genética , Complexo de Golgi/patologia , Humanos , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica
17.
J Biol Chem ; 287(37): 31330-41, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22815484

RESUMO

Insulin-like growth factors (IGFs) are essential for the development, regeneration, and hypertrophy of skeletal muscles. IGF-II promotes myoblast differentiation through phosphatidylinositol 3-kinase (PI 3-kinase), Akt, and mTOR signaling. Here, we report that skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) negatively regulates myogenesis through inhibition of IGF-II production and attenuation of the IGF-II-Akt-mTOR signaling pathway. We also demonstrate that SKIP expression, which was markedly elevated during differentiation, was controlled by MyoD in C2C12 cells. Expression of SKIP inhibited IGF-II at the transcription level. These results indicate that SKIP regulates MyoD-mediated muscle differentiation. Silencing of SKIP increased IGF-II transcription and myoblast differentiation. Furthermore, knockdown of SKIP resulted in thick myotubes with a larger number of nuclei than that in control C2C12 cells. Taken together, these data indicate that SKIP controls the IGF-II-PI 3-kinase-Akt-mTOR auto-regulation loop during myogenesis. Our findings identify SKIP as a key regulator of muscle cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos Esqueléticos/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/citologia , Monoéster Fosfórico Hidrolases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
18.
Mol Cell Biol ; 32(17): 3570-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751929

RESUMO

Skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) has previously been implicated in the regulation of insulin signaling in skeletal muscle. Here, we present the first report of the mechanisms by which SKIP specifically suppresses insulin signaling and the subsequent glucose uptake. Upon insulin stimulation, SKIP is translocated to the membrane ruffles, where it binds to the active form of Pak1, which mediates multiple protein complex formation with phosphatidylinositol 3,4,5-triphosphate (PIP(3)) effectors such as Akt2, PDK1, and Rac1; this leads to inactivation of these proteins. SKIP also promotes the inhibition of Rac1-dependent kinase activity and the scaffolding function of Pak1, which results in the dissociation of Akt2 and PDK1 from Pak1. Thus, specific suppression of insulin signaling is achieved via the spatiotemporal regulation of SKIP through the scaffolding function of Pak1. These interactions are the foundation of the specific and prominent role of SKIP in the regulation of insulin signaling.


Assuntos
Insulina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular , Glucose/metabolismo , Humanos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 287(10): 6991-9, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22247557

RESUMO

The glucose transporter 4 (GLUT4) is responsible for glucose uptake in the skeletal muscle. Insulin-induced translocation of GLUT4 to the plasma membrane requires phosphatidylinositol 3-kinase activation-mediated generation of phosphatidylinositol 3,4,5-trisphosphate PIP(3) and subsequent activation of Akt. Previous studies suggested that skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) has negative effects on the regulation of insulin signaling in the skeletal muscle cells. Here, we compared its effects on insulin signaling by selective inhibition of SKIP, SHIP2, and phosphatase and tensin homologue on chromosome 10 (PTEN) by short interfering RNA in the C2C12 myoblast cells. Suppression of SKIP significantly increased the insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate levels and Akt phosphorylation. Furthermore, silencing of SKIP, but not of PTEN, increased the insulin-dependent recruitment of GLUT4 vesicles to the plasma membrane. Taken together, these results imply that SKIP negatively regulates insulin signaling and glucose uptake by inhibiting GLUT4 docking and/or fusion to the plasma membrane.


Assuntos
Exocitose/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Mioblastos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Ativação Enzimática/fisiologia , Transportador de Glucose Tipo 4/genética , Inositol Polifosfato 5-Fosfatases , Insulina/genética , Camundongos , Mioblastos/citologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
20.
J Biochem ; 150(1): 83-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21436142

RESUMO

Pharbin, a 5-phosphatase that induces arborization, is one of the phosphoinositide 5-phosphatases that is highly mutated in patients with Joubert syndrome. Pharbin can hydrolyse PI(4,5)P(2) and PI(3,4,5)P(3) and has the same substrate specificity as SHIP2 and SKIP, which negatively regulate PI3K signalling. Here, we investigated the role of pharbin in IGF-1/PI3K signalling. Ectopic expression of pharbin markedly suppressed the IGF-1-induced activation of Akt without affecting p42/44 MAP kinase phosphorylation. In contrast, pharbin silencing by RNA interference increased the IGF-1-induced phosphorylation of Akt, suggesting that pharbin negatively regulates PI3K/Akt signalling. Pharbin expression also inhibited the phosphorylation of p70 S6 kinase and 4E-BP1 as well as the subsequent protein synthesis in response to IGF-1 treatment. Taken together, these results indicate that pharbin is an important negative regulator of IGF-1/PI3K/Akt signalling and protein synthesis.


Assuntos
Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenoviridae , Animais , Proteínas de Ciclo Celular , Expressão Gênica , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...